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We have performed a systematic series of semiclassical and quantum mechanical calculations of collisions of
Br* (electronicaly excited Br) with H2 in order to test four semiclassical methods against accurate quantum
mechanical scattering calculations for the quenching probability and the electronically nonadiabatic reaction
probability. The results are analyzed using four different methods of assigning final quantum numbers based
on the final values of the semiclassical and classical trajectory variables, namely energy-nonconserving
histogram analysis, energy-conserving histogram analysis, energy-nonconserving linear smooth sampling, and
energy-conserving linear smooth sampling. We examine the use of both forward and reverse state-to-state
probabilities to predict the quenching and reaction probabilities. The reaction and quenching probabilities are
compared to the results of accurate quantum mechanical calculations, and the mean unsigned error is calculated
for each combination of a semiclassical method and a final analysis algorithm. Our results indicate that Tully’s
fewest switches (TFS) trajectory-surface-hopping method and the Ehrenfest self-consistent-potential method
show the best agreement with the accurate results, although none of the methods provides satisfactory agreement
in the cases where the reaction or quenching probability is small. The TFS method is the only one that can
be used to calculate the reaction probabilities for this system directly in the forward direction, and it is judged
to be the best method overall for weakly coupled potential energy surfaces.

1. Introduction

There is considerable interest in developing mixed quantal-
classical methods for modeling the dynamics of electronically
nonadiabatic molecular processes because such methods can be
applied more readily than fully quantal techniques to the study
of complex processes involving large molecules.1 Comparison
of various approaches to accurate quantal benchmarks is an
important step in appraising their usefulness. In a recent paper,2

four semiclassical methods3-7 were tested against accurate
quantal results2,8,9 for three atom-diatom reactions involving
conical intersections. The present paper extends that study to a
qualitatively different kind of system, namely an atom-diatom
reaction in which the diabatic potential surfaces do not cross
but are approximately parallel in the entrance channel; this is
sometimes called the Rosen-Zener-Demkov10-12 case. The
same four semiclassical methods are tested against accurate
quantal results.

2. System

The system under study is

where the asterisk (*) denotes electronic excitation,V andj are
vibrational and rotational quantum numbers, and primes denote
final values. Figure 1 shows the diabatic and adiabatic potential
curves along the reaction path for the adiabatic reaction Br+
H2 f HBr + H. The value of the off-diagonal Hamiltonian
matrix elementU12 in the diabatic representation is constant
for the potential matrix13,14used here and is equal to 0.215 eV.

The diabatic potential energy surfaces are given in a previous
paper.13 The zero of energy corresponds to the adiabatic potential
energy of Br infinitely separated from H2 at its equilibrium
separation. The adiabatic potential energies of Br*+ H2 and
of HBr + H are 0.457 and 0.976 eV, respectively.

Process R1 is the nonadiabatic reaction and process R2 is
nonreactive de-excitation. We will reserve the word “quenching”
for the latter. The sum of the probabilities for nonadiabatic
reaction and quenching is called the total nonadiabatic prob-
ability.

Figure 1. Potential energy curves for Br*+ H2 and Br+ H2 along
the minimum energy path of the lowest adiabatic surface for the reaction
Br* + H2 f HBr + H from reactants to products. The left side of the
figure corresponds to Br or Br* approaching or receding from H2, and
the right side corresponds to HBr far from H. The horizontal dashed
lines denote the total energies of the collisions studied in this article,
i.e., Etot ) 1.3 and 1.5 eV.

Br* + H2(V, j) f {HBr(V′, j′) + H (R1)
Br + H2(V′, j′) (R2)
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3. Dynamics Methods

3.1. Accurate Quantum Mechanics.The methods used for
the accurate quantal calculations have been explained elsewhere.
We used the hybrid-basis-set scattered wave variational prin-
ciple15,16 with S matrix boundary conditions15 (which is also
called the outgoing wave variational principle), as extended to
electronically nonadiabatic rearrangement scattering.17,18 Cal-
culations on the present system require the definition of a
vibronic asymptotically diagonal representation14 because the
coupling does not vanish in either the adiabatic or diabatic
representation in the asymptotic region where boundary condi-
tions are applied.

3.2. Semiclassical Calculations.The methods used for the
semiclassical calculations are summarized in a previous paper.2

We used four semiclassical methods:
1. MM: the Meyer-Miller method3

2. E: the Ehrenfest method with unbundled trajectories,3 also
called the quantum/classical time-dependent self-consistent field-
method6

3. BT: the Blais-Truhlar trajectory-surface-hopping method4

4. TFS: Tully’s fewest-switches trajectory-surface-hopping
method5

The MM and E methods are called self-consistent-potential
(SCP) methods, and the BT and TFS methods are called
trajectory-surface-hopping (TSH) methods. The MM and E
methods are independent of whether propagation is carried out
in the adiabatic or diabatic representation, but we use the diabatic
representation. The TFS calculations were carried out in the
adiabatic representation, as recommended by Tully.1,7

Each of these four methods is applied with four different
schemes for assigning probabilities to discrete final quantum
states on the basis of the continuous final values of the
semiclassical and classical trajectory variables. In particular, we
used the histogram (H) method19 and linear smooth sampling20,21

(LSS), and each of these was applied in two ways. The first
way, called energy nonconserving (ENC), accepts predictions
of final-state populations even if the quantized state is not
accessible with conservation of total energy. The second way,
called energy conserving (EC), recognizes such predictions as
excluded and uses algorithms2 presented previously to reassign
any such populations predicted by the semiclassical methods
to the nearest energetically allowed discrete states. One of the
purposes of the present paper is to test which of these schemes
(ENC or EC) performs better. All four combinations, H-ENC,
LSS-ENC, H-EC, and LSS-EC, are completely explained
in our previous paper.2 Note that final states of H2 are always
assigned even values ofj since this paper is only concerned
with para-H2. Thus for both histogram and smooth sampling
methods, and for both forward and reverse trajectories, we are
always treating H2 using j′ bins that are two quanta wide.

Although the final-state analysis was discussed in a previous
paper, we think it is useful to mention some further details of
the calculation of the final vibrational quantum number in SCP
methods, and this discussion is presented in Appendix A.

In previous work we have applied two variations of the TFS
method: TFS-d and TFS-g. These two variations differ in the
way the momenta are adjusted after a successful hop. In the
TFS-d method, the momenta are adusted in the direction of the
nonadiabatic coupling vectord; this is the approach used in
the original TFS method5 and has been justified theoretically
by Herman22 and Coker and Xiao.23 In the TFS-g method, the
momenta is adjusted in the direction of the gradientg of the
energy gap between the initial and the final electronic states.
In Appendix B we show that if the diabatic coupling is a

constant, as it is for the potential energy matrix13,18 used here,
the TFS-g and TFS-d methods are identical. Therefore we do
not need the d and g labels for TFS methods in the present
paper.

One final option concerns the direction in which the
trajectories are run. None of these four semiclassical methods
satisfies microscopic reversibility, so the classical transition
probability Pkk′ for a k f k′ transition is not equal to the
transition probability for ak′ f k transition, as it should be. In
this paper all results are presented for the processes in the order
they are written in section 2. When these forward results are
obtained by running the trajectories backward, they are labeled
reverse (R), e.g., reverse TFS (R-TFS) or reverse Ehrenfest (R-
E). Backward trajectories differ from forward trajectories
because backward trajectories are quantized for products but
not for reactants, whereas forward trajectories are correctly
quantized for reactants but not for products. Reverse trajectory
methods have been well studied in the electronically adiabatic
case.24-26 Even when it is not known whether the reverse results
are more accurate than the forward ones, they serve a useful
role as a diagnostic since any large deviations between the
forward and reverse results should be considered as a warning
that perhaps neither is reliable.19

4. Calculations

All calculations in this paper are for total angular momentum
J equal to zero. Therefore there is one quantum mechanical
channel associated with each quantum state of the separated
atom-diatom system in each arrangement. A statek is therefore
specified by four quantum numbersR, n, V, and j whereR is
arrangement (it denotes which of the three atoms is separated
from the other two when the atoms are numbered in the order
H(1), Br(2), H(3), i.e.,R ) 1 or 3 for the products of (R1), and
R ) 2 for reactants and for the products of (R2)),n is electronic
quantum number (2 for the excited state, 1 for the ground state),
V is vibrational quantum number (0, 1, 2), andj is rotational
quantum number (0, 1, ..., 18 forR ) 1 and 0, 2, ..., 12 forR
) 2). We use the convention thatk denotesR, n, V, and j, and
k′ denotesR′, n′, V′, and j′.

4.1. Definitions of Probabilities.We define the state-selected
reaction probability of Br* with H2 as

wherek denotes a vibration-rotation state (V, j) of the reactants,
and the sum is over all vibration-rotation states (V′, j′) of the
HBr product of process (R1); thus the sum overk′ includes both
of the reactive arrangements (reaction with either H of H2). We
define the state-selected quenching probability as

wherek has the same meaning as in eq 1, but now the sum is
over all vibration-rotation states of H2 molecules produced with
quenched Br according to process (R2). Finally we define the
state-specific probability of a nonadiabatic collision as

When reverse trajectories are used to calculate any of these
quantities, one must start trajectories in every product statek′,
calculatePk′k by the H-ENC, LSS-ENC, H-EC, or LSS-

Pk
react) ∑

k′∈(R1)

Pkk′ (1)

Pk
quench) ∑

k′∈(R2)

Pkk′ (2)

Pk
nonadiabatic) Pk

react+ Pk
quench (3)
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EC algorithm, setPkk′ equal toPk′k, and then sum overk′.
Furthermore, most of the reverse trajectories have low trans-
lational energy, which increases the computational cost by about
an order of magnitude. Thus the reverse trajectory methods
require considerably more computation than the forward meth-
ods. Of course it is not necessary to run trajectories starting in
arrangement 3 since these results are identical to those starting
in arrangement 1 by symmetry; thus one actually carries out

the reverse trajectory calculations for process R1 starting in the
R ) 1 arrangement and multiplying the result by 2 to account
for this fact.

4.2. Specifics of the Calculations and Results.We per-
formed forward calculations for 11 different statesk at a total
energyE of 1.5 eV, and we performed both forward and reverse
calculations for 8 different statesk at E ) 1.3 eV.

All quantal results in this paper were carried out using basis
set A2 given in the supporting information of ref 14 and version
18.7 of theVP computer code27 on an SGI Origin2000 computer.
For quantities published previously,13,14we obtained essentially
the same results as before for reaction and quenching prob-
abilities greater than 10-4.

The semiclassical calculations were carried out first using
version 5.3 of theTSH computer code28 on an IBM SP computer;
this code uses the Bulirsch-Stoer method to integrate the coupled
differential equations. For the TFS method, we checked the
accuracy of the Bulirsch-Stoer method29 by using version 5.5
of theTSH code, which uses an improved integration algorithm.30

We found that in all cases the difference between the results of
two integration methods was less than the standard deviation
due to the Monte Carlo sampling statistics.

TABLE 1: Nonreactive De-excitation (i.e., Quenching)
Probabilities and Mean Unsigned Errorsa Calculated by
Quantum Scattering Calculations and by SCP Methods with
Linear Smooth Sampling for Br* + H2(W, j) f Br + H2 at
Etot ) 1.5 eV

Meyer-Miller Ehrenfest

(V, j) quantum ENC EC ENC EC

(0,0) 1.4e-3 8.2e-3 8.2e-3 6.4e-4 6.4e-4
(0,2) 1.5e-3 1.6e-2 1.6e-2 2.5e-3 2.5e-3
(0,4) 4.4e-3 4.0e-2 4.0e-2 4.4e-3 4.4e-3
(0,6) 6.3e-3 2.5e-2 2.6e-2 2.6e-3 2.6e-3
(0,8) 4.3e-4 3.3e-2 3.5e-2 1.5e-3 1.6e-3
(0,10) 1.7e-7 1.6e-3 1.6e-3 8.1e-6 5.9e-1
(1,0) 1.4e-3 3.9e-2 4.5e-2 7.3e-3 7.4e-3
(1,2) 1.3e-2 9.4e-2 1.2e-1 1.2e-2 1.3e-2
(1,4) 4.2e-3 6.2e-2 7.2e-2 2.0e-2 9.1e-1
∆Pquench 3.2e-2 3.7e-2 3.3e-3 1.7e-1

a Equation 5.

TABLE 2: Nonreactive De-excitation (i.e., Quenching)
Probabilities and Mean Unsigned Errors Calculated by
Quantum Scattering Calculations and by the TFS Method
for Br* + H2(W, j) f Br + H2, Summed over Final
Vibrational -Rotational States

Etot ) 1.3 eV Etot ) 1.5 eV

TFSa TFSa

(V, j) quantum ENC EC quantum ENC EC

(0,0) 1.7e-3 2.0e-3 1.7e-3 1.4e-3 9.9e-4 9.3e-4
(0,2) 4.4e-3 2.2e-3 1.8e-3 1.5e-3 3.8e-3 3.7e-3
(0,4) 8.0e-3 7.0e-3 6.6e-3 4.4e-3 6.5e-3 6.3e-3
(0,6) 2.0e-3 3.2e-3 3.0e-3 6.3e-3 4.0e-3 4.1e-3
(0,8) 2.1e-2 4.3e-3 4.3e-3 4.3e-4 3.2e-3 3.4e-3
(0,10)b - - - 1.7e-7 1.5e-4 1.0e+0
(1,0) 2.1e-6 2.3e-3 2.2e-3 1.4e-3 7.3e-3 7.0e-3
(1,2) 9.5e-6 5.4e-4 3.2e-4 1.3e-2 1.3e-2 1.1e-2
(1,4)b - - - 4.2e-3 2.0e-2 7.5e-1
∆Pquench 3.5e-3 3.5e-3 3.5e-3 2.0e-1

a For the TFS method, the histogram and linear smooth sampling
methods give identical reactive and quenching probabilities when
summed over final vibrational-rotational states.b At Etot ) 1.3 eV states
(0,10) and (1,4) are closed.

TABLE 3: Branching Ratios Calculated by Quantum
Scattering Calculations and by the Forward TFS Method for
Br* + H2(W, j) Using the Formula Preact/(Preact + Pquench)

Etot ) 1.3 eV Etot ) 1.5 eV

TFSa TFSa

(V, j) quantum ENC EC quantum ENC EC

(0,0) 0.279 0.099 0.115 0.323 0.353 0.367
(0,2) 0.248 0.191 0.224 0.462 0.205 0.209
(0,4) 0.138 0.136 0.143 0.276 0.207 0.222
(0,6) 0.101 0.179 0.189 0.136 0.310 0.328
(0,8) 0.000 0.034 0.034 0.571 0.192 0.183
(0,10)b - - - 0.144 0.051 0.000
(1,0) 0.000 0.019 0.020 0.667 0.112 0.116
(1,2) 0.000 0.025 0.042 0.187 0.240 0.272
(1,4)b - - - 0.005 0.174 0.006

a For the TFS method, the histogram and linear smooth sampling
methods give identical reactive and quenching probabilities.b At Etot

) 1.3 eV states (0,10) and (1,4) are closed.

Figure 2. Nonreactive de-excitation (i.e., quenching) probabilities
calculated by quantum mechanical scattering calculations and by various
semiclassical methods for Br*+ H2(V, j) f Br + H2, summed over
final vibrational-rotational states, atEtot ) 1.3 eV. Energy conservation
was not enforced. For the TFS method, the histogram and linear smooth
sampling algorithms give identical quenching probabilities when
summed over final vibrational-rotational states.

TABLE 4: Branching Ratios Calculated by Quantum
Scattering Calculations and by the Reverse Methods for Br*
+ H2(W, j) at Etot ) 1.3 eV Using the FormulaPreact/(Preact +
Pquench)

reverse TFS reverse Ehrenfest

histogram LSS LSS

(V, j) quantum ENC EC ENC EC ENC EC

(0,0) 0.279 0.000 0.000 0.006 0.006 0.011 0.011
(0,2) 0.248 0.038 0.038 0.134 0.160 0.033 0.033
(0,4) 0.138 0.178 0.178 0.209 0.241 0.197 0.197
(0,6) 0.101 0.194 0.194 0.161 0.155 0.167 0.166
(0,8) 0.000 0.000 0.000 0.004 0.006 0.050 0.049
(1,0) 0.000 0.000 0.000 0.003 0.003 0.024 0.026
(1,2) 0.000 0.389 0.389 0.351 0.387 0.309 0.339
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For the forward SCP methods, 50 000 trajectories were
computed for each initial state. For the TFS method, we used
a different number of trajectories for different initial states: for
the states where the reaction probability (calculated from a test
batch of 50 000 trajectories) is larger than 0.001, no more
trajectories were calculated, thus leaving the total at 50 000
trajectories per initial state; for the initial states where the
reaction probability is between 0.0001 and 0.001, an additional
150 000 trajectories were calculated, for a total of 200 000 per
state; for all other states an additional 450 000 trajectories were
calculated, for a total of 500 000 per state. For the reverse
Ehrenfest and reverse TFS calculations on (R1), 30 000 and
15 000 trajectories, respectively, were computed for each of the
12 different initial states (V′ ) 0, j′ ) 0-11). For the reverse
Ehrenfest and reverse TFS calculations on (R2), 15 000
trajectories were computed for each of the 12 different initial
states (V′ ) 0-2, j′ ) 0-12, evenj states only).

The full set of quantal and semiclassical values ofPkk′ for
reactions R1 and R2 and for the probabilities defined in eqs
1-3 are given in Tables 1-4 of this paper and Tables S-1 to
S-20 of the Supporting Information,29 and representative results
are illustrated in Figures 2-4. Some of the probabilities are
not tabulated or shown on figures, specifically:

(a) The BT method never predicts any reaction or quenching;
therefore none of the BT results are presented in detail. An
attempt was made to modify the BT method so that it can predict
small probabilities. The new method, however, does not give
stable results (see Appendix C).

(b) For SCP methods (Miller-Meyer and Ehrenfest) the
histogram method always results in zero reaction and quenching
probabilities. Only LSS results are tabulated.

(c) Forward SCP or reverse histogram SCP methods always
result in zero probability for the reaction R1; therefore for the
forward SCP methods only the quenching probabilities are
tabulated and no probabilities are tabulated for the reverse
histogram SCP methods.

Since there are too many probabilities to discuss them all in
detail, we will concentrate on understanding the trends. To
obtain an overview of the results, we calculated a mean unsigned
error for each method as follows:

where each of the three quantities on the right-hand side is
defined as follows:

whereN is the number ofk states considered at energyE. The
overall mean unsigned error for the forward methods was
defined as

These overall mean unsigned errors are given for all methods
in Tables 5-7.

We also tested a forward/reverse combined method in which

whereEk is the internal energy in statek. This is a simplified
version of a method suggested by Ashton et al.25 The errors for
this method were between those for the pure forward and reverse

Figure 3. Nonadiabatic probabilities calculated by quantum mechanical
scattering calculations and by various semiclassical methods for Br*
+ H2(V, j) at Etot ) 1.5 eV. All results in this figure are for forward
methods.

Figure 4. Branching ratios calculated by quantum scattering calcula-
tions and by the forward and reverse semiclassical methods for Br*+
H2(V, j) at Etot ) 1.3 eV using the formulaR ) Preact/(Preact + Pquench).
All results in this figure are based on linear smooth sampling, and
energy conservation was not enforced.

TABLE 5: Mean Unsigned Errors for Various Semiclassical
Methods for Br* + H2 at Etot ) 1.3 eV

method analysis ∆Pquench ∆Pnonad ∆Preact ∆Pav

MM H-ENC 0.0054 0.0059 0.0005 0.0039
LSS-ENC 0.0167 0.0162 0.0005 0.0111
H-EC 0.0054 0.0059 0.0005 0.0039
LSS-EC 0.0178 0.0173 0.0005 0.0119

Ehrenfest H-ENC 0.0054 0.0059 0.0005 0.0039
LSS-ENC 0.0041 0.0046 0.0005 0.0031
H-EC 0.0054 0.0059 0.0005 0.0039
LSS-EC 0.0041 0.0046 0.0005 0.0031

BT any 0.0054 0.0059 0.0005 0.0039
TFS H-ENC 0.0035 0.0037 0.0003 0.0025

LSS-ENC 0.0035 0.0037 0.0003 0.0025
H-EC 0.0035 0.0038 0.0003 0.0025
LSS-EC 0.0035 0.0038 0.0003 0.0025

R-Ehrenfest H-ENC 0.0054 0.0059 0.0005 0.0039
LSS-ENC 0.0054 0.0061 0.0008 0.0041
H-EC 0.0054 0.0059 0.0005 0.0039
LSS-EC 0.0054 0.0063 0.0009 0.0042

R-BT any 0.0054 0.0059 0.0005 0.0039
R-TFS H-ENC 0.0050 0.0057 0.0008 0.0038

LSS-ENC 0.0046 0.0051 0.0006 0.0034
H-EC 0.0050 0.0057 0.0008 0.0038
LSS-EC 0.0045 0.0050 0.0005 0.0034

∆Pav(E) )
∆Preact(E) + ∆Pquench(E) + ∆Pnonad(E)

3
(4)

∆PX(E) )
1

N
∑
k)1

N

|Pk
X(E,semiclassical)- Pk

X(E,quantal)|
(5)

∆P )
∆Pav(Etot)1.3 eV)+ ∆Pav(Etot)1.5 eV)

2
(6)

Pkk′ ) {Pkk′
forward if Ek > Ek′

Pkk′
reverse if Ek′ > Ek
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methods, but usually closer to the less accurate reverse method,
so we will not discuss this method any further.

5. Discussion

5.1. Quenching Probabilities.The SCP methods predict no
quenching when histogram analysis is used. Table 1 shows the
results obtained using SCP methods with LSS analysis at 1.5
eV; similar results are obtained at 1.3 eV and are given in Table
S-1 of Supporting Information. The Meyer-Miller SCP method
seriously overestimates the quenching probability; in more than
half the cases the error is more than a factor of 10. The Ehrenfest
method usually yields the correct order of magnitude, although
for a few cases at 1.3 eV the errors are much larger.

For the TSH methods, histogram and LSS methods yield the
same quenching probabilities if the results are summed over
final vibrational-rotational states. The Blais-Truhlar method
predicts no quenching. The results for Tully’s fewest switches
method are shown in Table 2. Usually, but not always, the
results are the correct order of magnitude.

Table 5 and Figure 2 show that on average the reverse
methods are slightly worse. Tables 5 and 6 show that the best
method, on average, for quenching probabilities is Tully’s fewest
switches method in the forward direction at 1.3 eV and
Ehrenfest’s method with LSS analysis and not forcing energy
conservation at 1.5 eV. It is somewhat discouraging though that
the average improvement of the very best methods over the
methods that simply predict zero (e.g., SCP histogram methods

or the Blais-Truhlar method) is only 33% (0.36 vs 0.54) at
1.3 eV and 8% (0.33 vs 0.36) at 1.5 eV. Furthermore, Table 6
shows that the best method at 1.5 eV (Ehrenfest-LSS) becomes
much worse if one reassigns final states that violate energy
conservation; this result indicates that the small average error
of the Ehrenfest-LSS method is achieved in a somewhat
nonphysical manner by populating disallowed states.

5.2. Total Nonadiabatic Probability. In judging methods
for treating collisions of electronically excited atoms, it is of
interest to consider their accuracy for the total probability of
de-excitation, independent of whether or not the system reacts.
Since histogram analysis predicts no de-excitation for SCP
methods and the same amount of de-excitation as linear smooth
sampling for TSH methods, and since Table 5 shows that reverse
methods are less accurate, on average, than forward methods
for the total nonadiabatic probability, we will discuss only
forward linear smooth sampling results. Figure 3 and Tables 5
and 6 show that, just as for quenching probabilities, Tully’s
fewest switches method is most accurate at 1.3 eV, and the
Ehrenfest method is most accurate at 1.5 eV, whether or not
energy conservation is not enforced, but both of these methods
become less accurate at 1.5 eV if energy conservation is required
in the final-state analysis. Averaging the mean error∆Pnonad

over the two energies gives the results shown in Table 8. The
Meyer-Miller method is unsuccessful, with average errors more
than a factor of 4 greater than the average probability, and the
Ehrenfest and Tully’s fewest switches methods are most
accurate, with average errors smaller than the average prob-
ability. The results for the Blais-Truhlar method are shown
just as a point of reference; clearly the average error equals the
average probability for this method.

5.3. Reaction Probabilities.The Meyer-Miller, Ehrenfest,
and Blais-Truhlar methods predict no nonadiabatic reaction
in the forward direction, and the Blais-Truhlar method predicts
no nonadiabatic reaction even with reverse trajectories. The
reactive branching ratios for Tully’s fewest switches method
with forward or reverse trajectories and for the Ehrenfest method
with reverse trajectories are shown in Tables 3 and 4 and in
Figure 4. None of the methods gets the trends completely right,
although Tully’s forward method comes closest. As pointed out
in section 3.2, though, when the results based on forward and
reverse trajectories differ significantly, as they do here, it is an
indication that the method is unreliable. (In particular, it does
not occur because we have too few trajectories. The trends are
different and would remain different even if we improved the
statistics further.)

Reverse methods are expensive (because we must run a full
set of trajectories for each final state, most of which have low
translational energy, rather than just for a single initial state),
and although the results are only slightly worse than forward
methods, that may be fortuitous. Some of the state-to-state
reaction probabilities for reverse methods are very inaccurate.
Final-state analysis clearly shows that energy conservation is
of great importance when dealing with the reverse methods,
more so than for the forward methods, but the present energy

TABLE 6: Mean Unsigned Errors for Various Semiclassical
Methods for Br* + H2 at Etot ) 1.5 eV

method analysis ∆Pquench ∆Pnonad ∆Preact ∆Pav

MM H-ENC 0.0036 0.0048 0.0012 0.0032
LSS-ENC 0.0318 0.0306 0.0012 0.0212
H-EC 0.0036 0.0048 0.0012 0.0032
LSS-EC 0.0368 0.0356 0.0012 0.0245

Ehrenfest H-ENC 0.0036 0.0048 0.0012 0.0032
LSS-ENC 0.0033 0.0035 0.0012 0.0027
H-EC 0.0036 0.0048 0.0012 0.0032
LSS-EC 0.1676 0.1679 0.0012 0.1122

BT any 0.0036 0.0048 0.0012 0.0032
TFS H-ENC 0.0035 0.0038 0.0010 0.0028

LSS-ENC 0.0035 0.0038 0.0010 0.0028
H-EC 0.1959 0.1960 0.0010 0.1309
LSS-EC 0.1959 0.1960 0.0010 0.1309

R-BT any 0.0036 0.0048 0.0012 0.0032

TABLE 7: Overall Mean Unsigned Errors ∆Pav and ∆P for
the Forward and Reverse Methods

forward reversea

analysis bothE E ) 1.3 eV E ) 1.3 eV

MM H-ENC 0.0036 0.0039 b
Ehrenfest H-ENC 0.0036 0.0039 0.0039
BT H-ENC 0.0036 0.0039 0.0039
TFS H-ENC 0.0026 0.0025 0.0038
MM LSS-ENC 0.0162 0.0111 b
Ehrenfest LSS-ENC 0.0029 0.0031 0.0041
BT LSS-ENC 0.0036 0.0039 0.0039
TFS LSS-ENC 0.0026 0.0025 0.0034
MM H-EC 0.0036 0.0039 b
Ehrenfest H-EC 0.0036 0.0039 0.0039
BT H-EC 0.0036 0.0039 0.0039
TFS H-EC 0.0667 0.0025 0.0038
MM LSS-EC 0.0182 0.0119 b
Ehrenfest LSS-EC 0.0577 0.0031 0.0042
BT LSS-EC 0.0036 0.0039 0.0039
TFS LSS-EC 0.0667 0.0025 0.0034

a For the reverse methods, calculations were done only atEtot ) 1.3
eV. b Reverse MM calculations were not done.

TABLE 8: Mean Unsigned Errors in Total Nonadiabatic
Probability Averaged over Both Energiesa

method ENC EC

MM 0.0234 0.0265
Ehrenfest 0.0041 0.0862
Blais-Truhlarb 0.0054 0.0054
TFS 0.0038 0.0999

a Forward trajectories with LSS analysis.b Pnonad) 0 for this method
for the system and energies studied in this paper.

Study of Electronically Nonadiabatic Transitions J. Phys. Chem. A, Vol. 103, No. 31, 19996229



conservation algorithm does not improve the agreement with
the quantum results.

The average errors in the reaction probabilities are shown in
Tables 5 and 6. Tully’s fewest switches method is the best, and
the average error is 40% (1.3 eV) or 25% (1.5 eV) better than
for the methods that predict no reaction.

Both SCP methods predict zero reaction probability in the
forward direction. Reverse methods do not provide overall
improvement in the error. Even if reverse methods did work
well, the cost of the computation is about 2 orders of magnitude
more than for forward calculations. The cost of a reverse
calculation grows very rapidly with the total energy, as more
final states become open. (Since trajectory results are usually
smooth functions of rotational quantum numbers, one could
bring the cost of reverse calculations down by running only
selected rotational states and interpolating, but that was not done
here.)

5.4. Overall Error. Table 7 shows that the overall errors,
which were defined in eq 6, are smallest for the Ehrenfest and
Tully’s fewest switches methods when energy conservation is
not enforced, but are nevertheless disappointingly large. The
Blais-Truhlar method predicts no nonadiabatic transition for a
weakly coupled system like the present example, so its average
error equals the average probability and is presented only as a
benchmark for the other methods to strive to better. Table 7
shows that they do indeed perform better but only by predicting
nonphysical transitions into energetically closed states. When
the final states in such cases are reassigned to the closest
energetically allowed state of that arrangement by the systematic
method of ref 2, the overall average error actually exceeds the
average probability. One does better by taking all nonadiabatic
probabilities as zero, which caps the unsigned error at 100%.
One would still prefer the methods that predict nonzero
probabilities if they yielded useful trends or branching ratios,
but the trends and branching ratios are not qualitatively correct
whether or not one reassigns energetically forbidden final states.

Reverse methods are computationally expensive, but they do
not agree any better than the forward methods with the accurate
quantum calculations. Enforcing energy conservation using the
present algorithm never improves the results, and it often makes
them much worse.

Overall, the TFS-H-ENC and E-LSS-ENC methods work
the best. The MM method does represent the correct trend, but
it consistently overestimates the probabilities. None of the
methods predicts small probabilities even qualitatively correctly,
with the Ehrenfest method being the least inaccurate for
nonreactive collisions. The TFS method is the best for reactive
nonadiabatic collisions.

6. Conclusions

The TFS method is the best overall method for this system
if energy conservation is not enforced. Ehrenfest is the second
best; it is almost as good as TFS for the quenching probabilities,
but it always predicts a zero reaction probability. Forcing energy
conservation makes the results worse if it has an effect, and it
has a more detrimental effect on the TFS method than the
Ehrenfest one, so the Ehrenfest method has the smallest average
error if one insists on energy conservation. Reverse methods
are much more expensive than forward ones, but their accuracy
is no better than the direct methods. In general the results are
not encouraging for our ability to make reliable quantitative
semiclassical calculations on photochemical reactions in which
the potential surfaces are weakly coupled, but the fewest-

switches trajectory-surface-hopping method is fairly robust for
usually predicting the correct order of magnitude.
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Appendix A

A critical step in the final-state analysis2 is the calculation
of the classical (continuous, unquantized) vibrational action
Ivib(tf) at the final trajectory timetf. In trajectory-surface-hopping
methods, a system is always propagating on one or another
potential energy surface, which dissociates to a well-defined
diatomic potential curveVm(r), wherem labels the electronic
state, andr is the diabatic internuclear distance. Then2,19

where the integration is over a full vibrational period,µdiat is
the diatomic reduced mass,E is total energy,Trel(tf) is the final
relative translational energy of the atom with respect to the
diatom, and

whereJrot(tf) is the final magnitude of the classical rotational
angular momentum. In SCP methods, though, the final electronic
populations aren1 for m ) 1 and (1 - n1) for m ) 2.
Asymptoticallyn1 becomes a constant, and the diatomic radial
motion is governed by a mixed effective potential

Then

This is evaluated as follows. The final diatomic radial kinetic
energy is given by

Then

We define

Then

where

Ivib(tf) ) Idr x2µdiat[E - Trel(tf) - Vm,eff] (A-1)

Vm,eff(r,tf) ) Vm(r) +
[Jrot(tf)]

2

2µdiatr
2

(A-2)

Vmix,eff(r) ) n1V1,eff(r) + n2V2,eff(r) (A-3)

Ivib(tf) ) Idr x2µdiat[E - Trel(tf) - Vmix,eff(r)] (A-4)

Tdiat(tf) ) E - Trel(tf) - Vmix,eff(r(tf)) (A-5)

Ivib(tf) ) Idr x2µdiat[Tdiat(tf) + Vmix,eff(tf) - Vmix,eff(r)]
(A-6)

W(r) ) V2,eff(r) - V1,eff(r) (A-7)

Ivib(tf) ) Idr {2µdiat[I1(tf,r) + I2(tf,r)]}
1/2 (A-8)

I1(tf,r) ) Tdiat(tf) + V1,eff(tf) + V1,eff(r) (A-9)
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and

Under two frequently encountered circumstances,I2(tf) is zero
or very small and can be neglected. First of all, this is true if
V1(r) is parallel toV2(r). This is true at the (M or M*)+ H2

asymptotes in ref 2 (where M is a metal atom) or at the (Br or
Br*) + H2 asymptote in the present paper. The second
circumstance whereI2(tf,r) can be neglected is whenn1 is very
small or zero. This occurs at the MH+ H asymptotes in ref 2
or at the HBr+ H asymptote in the present paper.

Appendix B

Consider a diabatic potential energy matrix with constant
coupling terms given by

where

andHel(x;R) is the electronic Hamiltonian (which also includes
the nuclear Coulombic energy),R is the vector of nuclear
coordinates,x is the vector of electronic coordinates, the
integrations in eqs B-2 and B-3 are overx, andφi

d(x;R) and
φj

d(x;R) are orthonormal diabatic states satisfying:

where∇R is the gradient overR andδij is the Kronecker delta.
As discussed elsewhere,30 eq B-4 is possible only for certain
model systems. In particular, as proposed by Preston and
Tully,31,32 it is possible for systems satisfying what we have
called30 the invariant-space approximation. The present system
(like essentially all systems that have been treated by semiclas-
sical and classical trajectory methods) satisfies this approxima-
tion by construction.

The diabatic potential matrix in eq B-1 can be diagonalized
to give the adiabatic potential energy matrix:

where

and

andφ1
a(x;R) andφ2

a(x;R) are adiabatic states. These states can
be expanded in the diabatic basis:

where

and

The nonadiabatic coupling vector is defined as

When eqs B-11 and B-12 are substituted into eq B-19, and the
integration is carried out with eqs B-4 and B-5, the nonadiabatic
coupling can be written:

which can be simplified to:

It can be seen thatd12(R) points in the direction of the difference
of the gradients of the diabatic potential matrix elementsU11-
(R) andU22(R). Note that the sign ond12(R) is arbitrary, in the
usual way for off-diagonal matrix elements, since the adiabatic
states defined in eqs B-10 and B-11 may be multiplied by a
phase factor without changing the adiabatic potential in eq B-6.

Now consider the vector defined by

Substituting eqs B-7 and B-8 into eq B-22 gives a result that
can be simplified to

I2(tf,r) ) (1 - n1)[W(tf) - W(r)] (A-10)

Vd(R) ) (U11(R) U12

U12 U22(R) ) (B-1)

Uii(R) ) 〈φi
d(x;R)|Hel(x;R)|φi

d(x;R)〉 (B-2)

U12 ) 〈φ1
d(x;R)|Hel(x;R)|φ2

d(x;R)〉 ) constant (B-3)

〈φi
d(x;R)|∇R|φj

d(x;R)〉 ) 0 (B-4)

〈φi
d(x;R)|φj

d(x;R)〉 ) δij (B-5)

Va(R) ) (A11(R) 0
0 A22(R) ) (B-6)

A11(R) ) 〈φ1
a(x;R)|Hel(x;R)|φ1

a(x;R)〉 )

Uh (R) - x∆U(R)2 + U12
2 (B-7)

A22(R) ) 〈φ2
a(x;R)|Hel(x;R)|φ2

a(x;R)〉 )

Uh (R) + x∆U(R)2 + U12
2 (B-8)

Uh (R) ) (1/2)(U22(R) + U11(R)) (B-9)

∆U(R) ) (1/2)(U22(R) - U11(R)) (B-10)

φ1
a(x;R) ) c11(R) φ1

d(x;R) + c12(R) φ2
d(x;R) (B-11)

φ2
a(x;R) ) c21(R) φ1

d(x;R) + c22(R) φ2
d(x;R) (B-12)

c11(R) ) -
∆U(R) + x∆U(R)2 + 4U12

2

N1(R)
(B-13)

c12(R) )
2U12

N1(R)
(B-14)

c21(R) ) -
∆U(R) - x∆U(R)2 + 4U12

2

N2(R)
(B-15)

c22(R) )
2U12

N2(R)
(B-16)

N1(R) ) x4U12
2 + (∆U(R) + x∆U(R)2 + U12

2)2 (B-17)

N2(R) ) x4U12
2 + (∆U(R) - x∆U(R)2 + U12

2)2 (B-18)

d12(R) ) 〈φ1
a(x;R)|∇R|φ2

a(x;R)〉 (B-19)

d12(R) ) c12(R)∇Rc22(R) + c11(R)∇Rc21(R) (B-20)

d12(R) ) 1
N1(R) N2(R)[ 4U12

2

x∆U(R)2 + 4U12
2]∇R[U22(R) -

U11(R)] (B-21)

g12(R) ) ∇R[A22(R) - A11(R)] (B-22)

g12(R) ) 2∇Rx∆U(R)2 + U12
2 (B-23)
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or to

Equation B-24 shows that the vectorg12(R) also points in the
direction of difference in the gradients of the diabatic potential
matrix elements. The sign ong12(R), unlike the sign ond12(R),
is well-defined.

The vectorsd12(R) and g12(R) may be parallel for some
geometries and antiparallel for others. Consider the angle,θdg,
betweend12(R) andg12(R):

Note that the sign of the dot product will change at the line of
crossings betweenU11(R) andU22(R). On one side of this line,
the two vectors will be parallel; on the other side they will be
antiparallel. For potential matrices in which there are no
crossings betweenU11(R) andU22(R), the vectorsd12(R) and
g12(R) will be parallel (or antiparallel) for all geometries.
However, we note that the TFS methods are invariant to the
sign on the unit vector that identifies the direction in which the
momentum is incremented or decremented.

Appendix C

The generalized Blais-Truhlar (GBT) method is a modifica-
tion of the original BT method that allows weakly coupled
systems to be studied. This overcomes a disadvantage of the
original BT method, which is that no hops will ever occur if
the probability of being in the current electronic state never drops
to 0.5.

The GBT method involves a parameter,εBT, that is between
0.0 and 0.5. If the probability of being in the current electronic
state drops to 1- εBT, then a quantum mechanical measurement
is made. The trajectory hops with a probability ofεBT, and
remains in the current state with a probability of 1- εBT. The
trajectory is reinitialized in either case. Here reinitialization is
taken to mean that the real part of the coefficient of one of the
electronic states is set to equal 1, and the imaginary part of this
coefficient and both parts of the remaining coefficients are set
to be 0.

We chooseεBT to be an order of magnitude smaller than the
average change in the electronic probabilities, as computed from
a small batch of trajectories in the absence of hopping events.
This would allow the observation of hopping events even for
systems in which the probability only changes by a very small
amount. The hypothesis to be tested is whether the calculated
value of the total quenching probability is independent of the
parameterεBT over some range of values.

The quenching probability for BrH2 as a function ofεBT is
shown in Figure 5. Note that there is no plateau region. At a
high value ofεBT the quenching probability,PQ, is zero, as
expected (notice thatεBT ) 0.5 yields the original BT method
exactly). AsεBT decreases, the system experiences more hopping
decisions, andPQ increases. Past a certain point, however,PQ

decreases instead of reaching a stability region. We can explain
this second trend by examining the form of the equations for
the electronic coefficients whose square magnitude gives the
probability of being in either adiabatic state. These equations
are1,5

and

wherec1 andc2 are complex coefficients. The time derivatives
of the probabilities of being in state 1 or 2 can be shown to be
equal to

and

Thus, the rate of change of the probabilities depends coherently
upon past history. Following a reinitialization, the coherence is
zero, and the probabilities will be stationary. They will remain
so until the coherence grows to some significant value, and,
from eqs C-1 and C-2 we see that this rate of change is given
by

Note that in the GBT method, asεBT is set to smaller and
smaller values, measurement events occur more often. Regard-
less of whether a hop occurs or not, the trajectory is reinitialized.
In a sense, we force the trajectories to exist in a regime where
the probabilities are changing slowly, or not at all. In the limit
of an infinitesimal value ofεBT, the total number of hops
approaches zero. This can be more clearly seen by examining
an ideal case whereR4 ‚d12(R) ) 1 at all geometries and all times.
It can be shown that for this simple case one solution is given
by P1 ) sin2 t, P2 ) cos2 t, and Re[c1*c2] ) (1/2)sin 2t. At t )
0 the system is in the excited electronic state. Whent )
arccos[εBT

1/2], the trajectory will either hop to surface 1 and be
reinitialized, or remain on surface 2 and be reinitialized. The
number of hop decisions over an interval of time,T, is thus
T/arccos[εBT

1/2], and the total number of hops that is expected
to occur over this interval is given byTεBT/arccos[εBT

1/2].
Clearly, asεBT approaches zero, the total number of hops also
approaches zero, for anyT.

This explanation reveals an important point in TSH calcula-
tions. The electronic coherence is important in the description
of nonadiabatic dynamics, especially for systems with small
values ofR4 ‚d12(R). In these systems, the dynamics observed
when electronic coefficients are reinitialized will be very
different from the dynamics observed when coherence informa-
tion is maintained. Further consideration of the type of argument
in the previous paragraph eventually leads to the conclusion

g12(R) )
2∆U(R)

x∆U(R)2 + U12
2
∇R[U22(R) - U11(R)] (B-24)

cosθdg )
g12(R)‚d12(R)

|g12(R)||g12(R)| ) sign[∆U(R)] (B-25)

c̆1 ) -c2R4 ‚d12(R) (C-1)

Figure 5. Dependence of the nonreactive de-excitation (i.e., quenching)
probabilities calculated by generalized Blais-Truhlar method for Br*
+ H2(0,0) f Br + H2 on parameterεBT, at Etot ) 1.3 eV.

c̆2 ) -c1R4 ‚d12(R) (C-2)

Ṗ2 ) 2 Re[c2*c1]R4 ‚d12(R) (C-3)

Ṗ1 ) -2 Re[c2*c1]R4 ‚d12(R) (C-4)

∂

∂t
Re[c2*c1] ) (P1 - P2)R4 ‚d12(R) (C-5)
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that the rate of hopping must depend on the rate of change of
the probabilities (as in the TFS algorithm) rather than the
magnitude of the probabilities (as in the BT or GBT algorithm)
and that the probabilities should not be reinitialized during the
trajectory. In systems with large values ofR4 ‚d12(R), the
derivatives given in eqs C-3 and C-4 may be large even shortly
after a reinitialization has occurred, and thus the coherence has
a smaller effect on the dynamics. This is the kind of system for
which the BT method was originally devised. This discussion
shows why weakly coupled systems provide a critical test case
for semiclassical methods.
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