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Are Semiclassical Methods Accurate for Electronically Nonadiabatic Transitions between
Weakly Coupled Potential Energy Surfaces?
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We have performed a systematic series of semiclassical and quantum mechanical calculations of collisions of
Br* (electronicaly excited Br) with klin order to test four semiclassical methods against accurate quantum
mechanical scattering calculations for the quenching probability and the electronically nonadiabatic reaction
probability. The results are analyzed using four different methods of assigning final quantum numbers based
on the final values of the semiclassical and classical trajectory variables, namely energy-nonconserving
histogram analysis, energy-conserving histogram analysis, energy-nonconserving linear smooth sampling, and
energy-conserving linear smooth sampling. We examine the use of both forward and reverse state-to-state
probabilities to predict the quenching and reaction probabilities. The reaction and quenching probabilities are
compared to the results of accurate quantum mechanical calculations, and the mean unsigned error is calculated
for each combination of a semiclassical method and a final analysis algorithm. Our results indicate that Tully’s
fewest switches (TFS) trajectory-surface-hopping method and the Ehrenfest self-consistent-potential method
show the best agreement with the accurate results, although none of the methods provides satisfactory agreement
in the cases where the reaction or quenching probability is small. The TFS method is the only one that can
be used to calculate the reaction probabilities for this system directly in the forward direction, and it is judged

to be the best method overall for weakly coupled potential energy surfaces.

1. Introduction 2 r

There is considerable interest in developing mixed quantal
classical methods for modeling the dynamics of electronically 15 Foveeemeeeemef
nonadiabatic molecular processes because such methods can be
applied more readily than fully quantal techniques to the study
of complex processes involving large molecui€omparison
of various approaches to accurate quantal benchmarks is an
important step in appraising their usefulness. In a recent gaper,
four semiclassical metho#is' were tested against accurate 0.5
quantal results®? for three atom-diatom reactions involving
conical intersections. The present paper extends that study to a [ —
qualitatively different kind of system, namely an atedliatom
reaction in which the diabatic potential surfaces do not cross
but are approximately parallel in the entrance channel; this is s, bohr
sometimes called the RoseAener-Demkov®12 case. The  Figure 1. Potential energy curves for Br+ H, and Br+ H; along

same four semiclassical methods are tested against accurat e minimum energy path of the lowest adiabatic surface for the reaction
quantal results r* + H, — HBr + H from reactants to products. The left side of the

figure corresponds to Br or Br* approaching or receding frognathd
the right side corresponds to HBr far from H. The horizontal dashed
2. System lines denote the total energies of the collisions studied in this article,

The system under study is ie., B =13 and 1.5 eV.
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. HBr (v, j') + H (R1) The diabatic potential energy surfaces are given in a previous
Br* + Hy(v,j) — Br + H,(/, ') (R2) paperd The zero of energy corresponds to the adiabatic potential
2 energy of Br infinitely separated fromHat its equilibrium
where the asterisk (*) denotes electronic excitatioandj are separation. The adiabatic potential energies ,Of BrH and
vibrational and rotational quantum numbers, and primes denoteOf HBr + H are 0.457 and 0.976 eV, respectively.
final values. Figure 1 shows the diabatic and adiabatic potential Process R1 is the nonadiabatic reaction and process R2 is
curves along the reaction path for the adiabatic reactior-Br ~ nonreactive de-excitation. We will reserve the word “quenching”
H, — HBr + H. The value of the off-diagonal Hamiltonian for the latter. The sum of the probabilities for nonadiabatic
matrix elementU;, in the diabatic representation is constant reaction and quenching is called the total nonadiabatic prob-
for the potential matridé14used here and is equal to 0.215 eV. ability.
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3. Dynamics Methods constant, as it is for the potential energy magé used here,

the TFS-g and TFS-d methods are identical. Therefore we do
enot need the d and g labels for TFS methods in the present
paper.

One final option concerns the direction in which the
trajectories are run. None of these four semiclassical methods
satisfies microscopic reversibility, so the classical transition
probability Py for a k — K' transition is not equal to the
transition probability for & — k transition, as it should be. In
this paper all results are presented for the processes in the order
they are written in section 2. When these forward results are
obtained by running the trajectories backward, they are labeled
reverse (R), e.g., reverse TFS (R-TFS) or reverse Ehrenfest (R-
E). Backward trajectories differ from forward trajectories
because backward trajectories are quantized for products but
not for reactants, whereas forward trajectories are correctly
qguantized for reactants but not for products. Reverse trajectory
methods have been well studied in the electronically adiabatic
case?* 26 Even when it is not known whether the reverse results

3.1. Accurate Quantum MechanicsThe methods used for
the accurate quantal calculations have been explained elsewher
We used the hybrid-basis-set scattered wave variational prin-
ciplet>16 with S matrix boundary conditiort8 (which is also
called the outgoing wave variational principle), as extended to
electronically nonadiabatic rearrangement scatteringCal-
culations on the present system require the definition of a
vibronic asymptotically diagonal representafibbecause the
coupling does not vanish in either the adiabatic or diabatic
representation in the asymptotic region where boundary condi-
tions are applied.

3.2. Semiclassical CalculationsThe methods used for the
semiclassical calculations are summarized in a previous paper.
We used four semiclassical methods:

1. MM: the MeyerMiller methoc?

2. E: the Ehrenfest method with unbundled trajectotigiso
called the quantum/classical time-dependent self-consistent field-

metho&' _ _ _ are more accurate than the forward ones, they serve a useful
3.BT: Fhe Bla!s—TruhIar trajectory-surface-hopping mettfod 516 a5 a diagnostic since any large deviations between the
4. TFS: Tully's fewest-switches trajectory-surface-hopping  forward and reverse results should be considered as a warning

method _ ~that perhaps neither is reliabi.
The MM and E methods are called self-consistent-potential

(SCP) methods, and the BT and TFS methods are called4. Calculations
trajectory-surface-hopping (TSH) methods. The MM and E All calculat in thi f | |
methods are independent of whether propagation is carried out. A\ calculations in this paper are for total angular momentum

in the adiabatic or diabatic representation, but we use the diabatic? equal to zero. Therefore there is one quantum mechanical

representation. The TFS calculations were carried out in the channe! associated V_Vith each quantum state Qf the separated
adiabatic representation, as recommended by Tdlly. atom_—_dlatom system in each arrangement. A s_tatetherefo_re
Each of these four methods is applied with four different specified by four quantum numbees n, v, andj wherea is

schemes for assigning probabilities to discrete final quantum ?rran?hemetﬂt ('E[ denort]es \G’P'Cht of the three agtom(sj IS fﬁparzted
states on the basis of the continuous final values of the ''om the other two when the atoms areé numbered In the order

semiclassical and classical trajectory variables. In particular, we H(P’ Br(2), H(3), i.e. = 1 or 3 for the products of (R1), a_md

used the histogram (H) metht§cnd linear smooth sampliffp: o = 2 for reactants and for the |_oroducts of (R2))s electronic

(LSS), and each of these was applied in two ways. The first quantum r!”mber (2 for the excited state, 1 for.t.he groqnd state),

way, called energy nonconserving (ENC), accepts predictions ¥ is vibrational quantum number £O’ 1, 2), apnib rotational

of final-state populations even if the quantized state is not q_uantum number (0, 1, 18for=1and0,2, ..., 1.2 foo

accessible with conservation of total energy. The second Way,; gln\é\{gg?ent,hi,cgﬂ\é?m'on thadenotes, n, », andj, and

gilcl:leuddgg‘;rr?g S;)Q: Zrl\élgﬁtég;)éggrc]?egdn;iiiiﬂ?yFt)(r)eg;gggsn as 41 Definition_s_of Probabili_ties.We define the state-selected

any such populations predicted by the semiclassical methods'eaction probability of Br* with H as

to the nearest energetically allowed discrete states. One of the react

purposes of the present paper is to test which of these schemes P = P 1)

(ENC or EC) performs better. All four combinations,HENC, ke(R1)

LSS-ENC, H—EC, and LSS EC, are completely explained

in our previous papetNote that final states of Hare always

assigned even values pfsince this paper is only concerned

with para-b. Thus for both histogram and smooth sampling

methods, and for both forward and reverse trajectories, we are

always treating K usingj’ bins that are two quanta wide.
Although the final-state analysis was discussed in a previous quench

paper, we think it is useful to mention some further details of Pe = Pux 2)

the calculation of the final vibrational quantum number in SCP ke(R2)

methods, and this discussion is presented in Appendix A. ) ) )
In previous work we have applied two variations of the TFS wherek has the Same meaning as In eq 1, but now the sum is

method: TFS-d and TFS-g. These two variations differ in the OVer all V|brat|or1—rota_t|on states of Hmolecul_es produced ywth

way the momenta are adjusted after a successful hop. In theduenched Br according to process (R2). Finally we define the

TFS-d method, the momenta are adusted in the direction of theState-specific probability of a nonadiabatic collision as

nonadiabatic coupling vectat; this is the approach used in

wherek denotes a vibrationrotation state, j) of the reactants,
and the sum is over all vibratiefrotation states:(, j') of the
HBr product of process (R1); thus the sum ok@ncludes both
of the reactive arrangements (reaction with either H gf M/e
define the state-selected quenching probability as

the original TFS methddand has been justified theoretically Pﬂonadiabaﬂc= Prkew"' Pguemh 3)
by Herman? and Coker and Xiaé? In the TFS-g method, the
momenta is adjusted in the direction of the gradigrf the When reverse trajectories are used to calculate any of these

energy gap between the initial and the final electronic states. quantities, one must start trajectories in every product &tate
In Appendix B we show that if the diabatic coupling is a calculatePyk by the H-ENC, LSS-ENC, H—EC, or LSS-
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TABLE 1: Nonreactive De-excitation (i.e., Quenching) 1E-1
Probabilities and Mean Unsigned Errorst Calculated by
Quantum Scattering Calculations and by SCP Methods with
Linear Smooth Sampling for Br* + Ha(v,j) — Br + H; at
Etot =15eV 1IE2
Meyer—Miller Ehrenfest :i
(v, ]) guantum ENC EC ENC EC
(0,0) 14e-3 82e-3 823 64e4 64e4 B3 - <
0,2) 1.5e-3 1.6e-2 16e-2 25e-3 25e3 5
(0,4) 4.4e-3 4.0e-2 4.0e-2 4.4e-3 4.4e-3 z
(0,6) 6.3e-3 25e-2 2.6e-2 26e-3 26e3 A
(0,8) 4.3e-4 3.3e-2 3.5e-2 1.5e-3 1.6e-3 g
(0,10) 1.7¢7 16e-3 16e3 8le6 591 1E-4 £ == Quantum
(1,0) 1.4e-3 3.9e-2 4.5e-2 7.3e-3 7.4e-3 -= Forward TFS
1,2) 13e-2 94e2 121 12e2 13e2 o Reverse Ehrenfest-LSS
(1,4) 42e-3 6282 7.2e-2 20e2 9lel -+ Reverse TFS-H
Apavench 32e-2 37e2 33e3 17el IE5 T
-+ Reverse TFS-LSS
a Equation 5. /
TABLE 2: Nonreactive De-excitation (i.e., Quenching) ‘ ‘
Probabilities and Mean Unsigned Errors Calculated by IB-6 —
Quantum Scattering Calculations and by the TFS Method 0,0) 0.4) 0.8) (1,2)

for Br* + Hy(v,j) — Br + H,, Summed over Final
Vibrational —Rotational States

Initial state (v, j)
Figure 2. Nonreactive de-excitation (i.e., quenching) probabilities

Et=1.3eV Eot=1.5eV calculated by quantum mechanical scattering calculations and by various
TES TFS semiclassical methods for Brf Hy(v, j) — Br + Hp, summed over
] final vibrational-rotational states, &= 1.3 eV. Energy conservation
(v,j) quantum ENC EC  quantum ENC EC was not enforced. For the TFS method, the histogram and linear smooth
(0,0) 1.7e-3 2.0e-3 1.7e-3 1.4e-3 9.9e-4 9.3e-4 sampling algorithms give identical quenching probabilities when
(0,2) 4.4e-3 22e-3 1.8e-3 15e-3 3.8e-3 3.7e-3 summed over final vibrationalrotational states.
0,4 8.0e-3 7.0e-3 6.6e-3 4.4e-3 6.5e-3 6.3e-3 . .
EO,G; 20e-3 32e-3 3.0e-3 6.3e-3 4.0e-3 4.1e-3 TABLE 4: Branchlng Ratios Calculated by Quantum
(0,8) 21e-2 43e-3 4.3e-3 4.3e-4 3.2e-3 3.4e-3 Scattering Calculations and by the Reverse Methods for Br*
(0,10}) _ _ _ 1.7e-7 1.5e-4 1.0et0 + H2 v, j) at Etot =1.3eV Using the FO”T]U|aprea‘:t/(F’react +
! ' ' : Pauencl
(2,0) 2.1e6 23e-3 22e-3 1l4e-3 7.3e-3 7.0e-3
(1,2) 95e-6 54e-4 32e-4 13e2 13e2 1lle2 reverse TFS reverse Ehrenfest
(14 - - - 4.2e-3 2.0e-2 7.5e-1 -
Apatench 35e-3 3.5e-3 35e-3 2.0e-1 histogram LSS LSS
aFor the TFS method, the histogram and linear smooth sampling (v.j) quantum ENC EC ENC EC ENC EC
methods give identical reactive and quenching probabilites when (0,00 0.279  0.000 0.000 0.006 0.006 0.011 0.011
summed over final vibrationalrotational states At E,., = 1.3 eV states (0,2) 0.248 0.038 0.038 0.134 0.160 0.033 0.033
(0,10) and (1,4) are closed. (0,4) 0.138 0.178 0.178 0.209 0.241 0.197 0.197
(0,6) 0.101 0.194 0.194 0.161 0.155 0.167 0.166
TABLE 3: Branching Ratios Calculated by Quantum (0,8) 0.000 0.000 0.000 0.004 0.006 0.050 0.049
Scattering Calculations and by the Forward TFS Method for (1,00 0.000 0.000 0.000 0.003 0.003 0.024 0.026
Br* + Hy(z, ) Using the Formula Preact/(preact  pauench) (1,2) 0.000 0.389 0.389 0.351 0.387 0.309 0.339
Ewot = 1.3eVv Ewt=1.5eV
the reverse trajectory calculations for process R1 starting in the
TFS TFS -
) o = 1 arrangement and multiplying the result by 2 to account
(v,j) quantum  ENC EC quantum  ENC EC for this fact.
(0,0 0.279 0.099 0.115 0.323 0.353 0.367 4.2. Specifics of the Calculations and ResultsVe per-
(0.2) 0.248 0191 0224 0462 0205 0.209 formed forward calculations for 11 different stateat a total
(0.4) 0.138 0136  0.143 0.276 0.207  0.222 energyE of 1.5 eV, and we performed both forward and reverse
(0,6) 0.101 0.179  0.189 0.136 0.310 0.328 . . -
(0.8) 0.000 0034 0034 0571 0192 0183 Calculations for 8 different statdsatE = 1.3 eV.
(0,10 - - - 0.144 0.051 0.000 All guantal results in this paper were carried out using basis
(1,0 0.000 0.019 0.020 0.667 0.112 0.116 set A2 given in the supporting information of ref 14 and version
(1.2) 0.000  0.025 0.042 0187 0240 0.272 187 of theve computer cod€ on an SGI Origin2000 computer.
(1,4 - - - 0.005 0.174 0.006

For quantities published previousl§4we obtained essentially

aFor the TFS method, the histogram and linear smooth sampling the same results as before for reaction and quenching prob-
methods give identical reactive and quenching probabilitiég. Ei
= 1.3 eV states (0,10) and (1,4) are closed.

EC algorithm, setPy equal to Py, and then sum ovek'.

abilities greater than 10.
The semiclassical calculations were carried out first using
version 5.3 of thesH computer cod®® on an IBM SP computer;

Furthermore, most of the reverse trajectories have low trans-this code uses the Bulirsch-Stoer method to integrate the coupled
lational energy, which increases the computational cost by aboutdifferential equations. For the TFS method, we checked the
an order of magnitude. Thus the reverse trajectory methodsaccuracy of the Bulirsch-Stoer meti#8dby using version 5.5
require considerably more computation than the forward meth- of theTsH code, which uses an improved integration algoriim.
ods. Of course it is not necessary to run trajectories starting in We found that in all cases the difference between the results of
arrangement 3 since these results are identical to those startingwo integration methods was less than the standard deviation
in arrangement 1 by symmetry; thus one actually carries out due to the Monte Carlo sampling statistics.
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le-1 T TABLE 5: Mean Unsigned Errors for Various Semiclassical
Methods for Br* + H, at E;;; = 1.3 eV
le-2 & K method analysis Apduench  Apnonad A preact APy,
y le3 MM H—ENC 0.0054  0.0059 0.0005 0.0039
2 LSS-ENC 0.0167 0.0162 0.0005 0.0111
% Quantum H—EC 0.0054 0.0059 0.0005 0.0039
2 LSS-EC 0.0178 0.0173 0.0005 0.0119

le-5 -+ MM-LSS-ENC
- Ehrenfest-LSS-ENC

Ehrenfest H-ENC 0.0054 0.0059 0.0005 0.0039
LSS-ENC 0.0041 0.0046 0.0005 0.0031

~ TFS-ENC H-EC 00054 00059 00005 0.0039

le7 L . LSS-EC 00041 00046 00005 0.0031
BT any 00054 0.0059 00005 0.0039

©.0 ©4 ©.8) (1.0) a4 TES H-ENC  0.0035 00037 0.0003 0.0025
Initial state (v, ) LSS-ENC 00035 00037 00003 0.0025

H-EC 00035 00038 00003 0.0025

Figure 3. Nonadiabatic probabilities calculated by quantum mechanical

scattering calculations and by various semiclassical methods for Br* LSS EC 0.0035 0.0038  0.0003 0.0025

R-Ehrenfest HENC 0.0054 0.0059 0.0005 0.0039

—r;eTﬁ%é) at Bt = 1.5 eV. All results in this figure are for forward LSS-ENC 00054 00061 00008 00041
: H—EC 0.0054 0.0059 0.0005 0.0039

0a LSS-EC  0.0054 0.0063 0.0009 0.0042

AT ~ Quantum R-BT any 0.0054 0.0059 0.0005 0.0039

‘  Reverse Enrenfest R-TFS H-ENC  0.0050 0.0057 0.0008 0.0038
LSS-ENC  0.0046 0.0051 0.0006 0.0034

03 [ ~ Forward TFS H—EC 0.0050 0.0057 0.0008 0.0038

LSS-EC 0.0045 0.0050 0.0005 0.0034
- Reverse TFS
(b) For SCP methods (MillerMeyer and Ehrenfest) the
histogram method always results in zero reaction and quenching
probabilities. Only LSS results are tabulated.
(c) Forward SCP or reverse histogram SCP methods always
result in zero probability for the reaction R1; therefore for the
0.0 forward SCP methods only the quenching probabilities are
0,0 04 0,8 (1,2) tabulated and no probabilities are tabulated for the reverse
Initial state (v, ) histogram SCP methods.
Figure 4. Branching ratios calculated by quantum scattering calcula-  Since there are too many probabilities to discuss them all in
tions and by the forward and reverse semiclassical methods fo#-Br*  detail, we will concentrate on understanding the trends. To
Hx(v, ) at Er = 1.3 eV using the formul&® = Preacj(preact 4 pauench) obtain an overview of the results, we calculated a mean unsigned

All results in this figure are based on linear smooth sampling, and error for each method as follows:
energy conservation was not enforced.

0.1

APreac E + quuenc E + APnona E
For the forward SCP methods, 50 000 trajectories were AP, (E) = ) 3*( ) 8 (4)

computed for each initial state. For the TFS method, we used
a different number of trajectories for different initial states: for
the states where the reaction probability (calculated from a test
batch of 50 000 trajectories) is larger than 0.001, no more
trajectories were calculated, thus leaving the total at 50 000 1N
trajectories per initial state; for the initial states where the Xey — X ; ; X

reaction probability is between 0.0001 and 0.001, an additional AP(E) N kZI IP(E.semiclassical)- P’(E,quantal)
150 000 trajectories were calculated, for a total of 200 000 per (5)
state; for all other states an additional 450 000 trajectories were

Calculated, for a total of 500 000 per state. For the reverse whereN is the number ok states considered at enerﬁyThe
Ehrenfest and reverse TFS calculations on (R1), 30 000 andoverall mean unsigned error for the forward methods was
15 000 trajectories, respectively, were computed for each of the defined as

12 different initial statesy = 0, ] = 0—11). For the reverse
Ehrenfest and reverse TFS calculations on (R2), 15000 AP_(E =13 eV)+ AP, (E,=1.5¢eV)
trajectories were computed for each of the 12 different initial AP = > (6)
states {' = 0—2,]' = 0—12, evenj states only).
The full set of quantal and semiclassical valuesPf for . .
reactions R1 and R2 and for the probabilities defined in eqs in Trgifsso;e;é" mean unsigned errors are given for all methods
1—-3 are given in Tables-14 of this paper and Tables S-1 to
S-20 of the Supporting Informaticii,and representative results
are illustrated in Figures-24. Some of the probabilities are ploard i £ > E
not tabulated or shown on figures, specifically: Po=1{ % ko
(a) The BT method never predicts any reaction or quenching; P if Be > E
therefore none of the BT results are presented in detail. An
attempt was made to modify the BT method so that it can predict whereEy is the internal energy in state This is a simplified
small probabilities. The new method, however, does not give version of a method suggested by Ashton ébdlhe errors for
stable results (see Appendix C). this method were between those for the pure forward and reverse

where each of the three quantities on the right-hand side is
defined as follows:

We also tested a forward/reverse combined method in which
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TABLE 6: Mean Unsigned Errors for Various Semiclassical TABLE 8: Mean Unsigned Errors in Total Nonadiabatic
Methods for Br* + H, at E;os = 1.5 eV Probability Averaged over Both Energie$
method analysis ~ APauench  Apronad  Apreact AP, method ENC EC
MM H—ENC 0.0036 0.0048 0.0012 0.0032 MM 0.0234 0.0265
LSS-ENC 0.0318 0.0306 0.0012 0.0212 Ehrenfest 0.0041 0.0862
H—EC 0.0036 0.0048 0.0012 0.0032 Blais—TruhlaP 0.0054 0.0054
LSS-EC 0.0368 0.0356 0.0012 0.0245 TFS 0.0038 0.0999
Ehrenfest LI;SE_NECIZ\‘C 88822 888‘312 8881% 888% 2 Forward trajectories with LSS analysFé{’”"”aﬂ: 0 for this method
H—EC 0.0036 0.0048 0.0012 0.0032 for the system and energies studied in this paper.
LSS-EC 0.1676 0.1679 0.0012 0.1122 . .
BT any 0.0036 0.0048 0.0012 0.0032 oOr the Blais-Truhlar method) is only 33% (0.36 vs 0.54) at
TFS H-ENC 0.0035 0.0038 0.0010 0.0028 1.3 eV and 8% (0.33 vs 0.36) at 1.5 eV. Furthermore, Table 6
LSS-ENC  0.0035  0.0038 0.0010 0.0028  shows that the best method at 1.5 eV (EhrenfeSS) becomes
H-EC 0.1959  0.1960  0.0010 0.1309  mych worse if one reassigns final states that violate energy

LSS—EC 01959 0.1960 = 0.0010  0.1309 conservation; this result indicates that the small average error

R-BT any 00036 0.0048 0.0012  0.0032 of the EhrenfestLSS method is achieved in a somewhat

TABLE 7: Overall Mean Unsigned Errors AP,, and AP for nonphysical manner by populating disallowed states.

the Forward and Reverse Methods 5.2. Total Nonadiabatic Probability. In judging methods
forward reverse for treating collisions of electronically excited atoms, it is of

interest to consider their accuracy for the total probability of

analysis botlE E=13ev E=13eV . .
Y de-excitation, independent of whether or not the system reacts.

’I\Eﬂrwenfest H;Emg 8'8822 8'8823 b00039 Since histogram analysis predicts no de-excitation for SCP
BT H—ENGC 0.0036 0.0039 0.0039 methods and the same amount of de-excitation as linear smooth
TES H—ENC 0.0026 0.0025 0.0038 sampling for TSH methods, and since Table 5 shows that reverse
MM LSS—-ENC  0.0162 0.0111 b methods are less accurate, on average, than forward methods
Ehrenfest LSSENC  0.0029 0.0031 0.0041 for the total nonadiabatic probability, we will discuss only
%IS '-LSSSS_ENE 8-8822 8-8822 8-8822 forward linear smooth sampling results. Figure 3 and Tables 5
MM H_EC 0.0036 0.0039 b and 6 show that, just as for quenching probabilities, Tully’s
Ehrenfest HEC 0.0036 0.0039 0.0039 fewest switches method is most accurate at 1.3 eV, and the
BT H—EC 0.0036 0.0039 0.0039 Ehrenfest method is most accurate at 1.5 eV, whether or not
TFS H-EC 0.0667 0.0025 0.0038 energy conservation is not enforced, but both of these methods
MM LSS—EC 0.0182 0.0119 b become less accurate at 1.5 eV if energy conservation is required
E?re”feSt L'éSiEg 8'8822 8'8833 8'88‘3% in the final-state analysis. Averaging the mean erk@onad
TES LSS-EC 0.0667 0.0025 0.0034 over the two energies gives the results shown in Table 8. The
. ) Meyer—Miller method is unsuccessful, with average errors more
For the reverse methods, calculations were done orfeat 1.3 than a factor of 4 greater than the average probability, and the

F :
eV.* Reverse MM calculations were not done. Ehrenfest and Tully’s fewest switches methods are most

ccurate, with average errors smaller than the average prob-
ability. The results for the BlaisTruhlar method are shown
just as a point of reference; clearly the average error equals the
average probability for this method.

5.3. Reaction Probabilities.The Meyer-Miller, Ehrenfest,

5.1. Quenching Probabilities.The SCP methods predict no  and Blais-Truhlar methods predict no nonadiabatic reaction
guenching when histogram analysis is used. Table 1 shows thein the forward direction, and the Blaidruhlar method predicts
results obtained using SCP methods with LSS analysis at 1.5no nonadiabatic reaction even with reverse trajectories. The
eV; similar results are obtained at 1.3 eV and are given in Table reactive branching ratios for Tully’s fewest switches method
S-1 of Supporting Information. The MeyeMiller SCP method with forward or reverse trajectories and for the Ehrenfest method
seriously overestimates the quenching probability; in more than with reverse trajectories are shown in Tables 3 and 4 and in
half the cases the error is more than a factor of 10. The EhrenfestFigure 4. None of the methods gets the trends completely right,
method usually yields the correct order of magnitude, although although Tully’s forward method comes closest. As pointed out
for a few cases at 1.3 eV the errors are much larger. in section 3.2, though, when the results based on forward and

For the TSH methods, histogram and LSS methods yield the reverse trajectories differ significantly, as they do here, it is an
same quenching probabilities if the results are summed overindication that the method is unreliable. (In particular, it does
final vibrational-rotational states. The BlaisTruhlar method not occur because we have too few trajectories. The trends are
predicts no quenching. The results for Tully’s fewest switches different and would remain different even if we improved the
method are shown in Table 2. Usually, but not always, the statistics further.)
results are the correct order of magnitude. Reverse methods are expensive (because we must run a full

Table 5 and Figure 2 show that on average the reverseset of trajectories for each final state, most of which have low
methods are slightly worse. Tables 5 and 6 show that the besttranslational energy, rather than just for a single initial state),
method, on average, for quenching probabilities is Tully’s fewest and although the results are only slightly worse than forward
switches method in the forward direction at 1.3 eV and methods, that may be fortuitous. Some of the state-to-state
Ehrenfest's method with LSS analysis and not forcing energy reaction probabilities for reverse methods are very inaccurate.
conservation at 1.5 eV. It is somewhat discouraging though that Final-state analysis clearly shows that energy conservation is
the average improvement of the very best methods over theof great importance when dealing with the reverse methods,
methods that simply predict zero (e.g., SCP histogram methodsmore so than for the forward methods, but the present energy

methods, but usually closer to the less accurate reverse metho
so we will not discuss this method any further.

5. Discussion
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conservation algorithm does not improve the agreement with switches trajectory-surface-hopping method is fairly robust for
the quantum results. usually predicting the correct order of magnitude.

The average errors in the reaction probabilities are shown in ] )

Tables 5 and 6. Tully’s fewest switches method is the best, and Acknowledgment. This work was supported in part by the
the average error is 40% (1.3 eV) or 25% (1.5 eV) better than National Science Foundation, Grant CHE97-25965.
for the methods that predict no reaction.

Both SCP methods predict zero reaction probability in the
forward direction. Reverse methods do not provide overall
improvement in the error. Even if reverse methods did work
well, the cost of the computation is about 2 orders of magnitude
more than for forward calculations. The cost of a reverse Appendix A
calculation grows very rapidly with the total energy, as more
final states become open. (Since trajectory results are usually A critical step in the final-state analy3ig the calculation
smooth functions of rotational quantum numbers, one could of the classical (continuous, unquantized) vibrational action
bring the cost of reverse calculations down by running only lvio(t) at the final trajectory timé. In trajectory-surface-hopping
selected rotational states and interpolating, but that was not donémethods, a system is always propagating on one or another
here.) potential energy surface, which dissociates to a well-defined

5.4. Overall Error. Table 7 shows that the overall errors, diatomic potential curvé/y(r), wherem labels the electronic

which were defined in eq 6, are smallest for the Ehrenfest and State; and is the diabatic internuclear distance. Théh
Tully’s fewest switches methods when energy conservation is
not enforced, but are nevertheless disappointingly large. The Lin(t) = #0r /2ol E = Trei(t) = Vined (A1)
Blais—Truhlar method predicts no nonadiabatic transition for a

weakly coupled system like the present example, so its averagewhere the integration is over a full vibrational periggiat is
error equals the average probability and is presented only as dhe diatomic reduced massjs total energyTre(ts) is the final
benchmark for the other methods to strive to better. Table 7 relative translational energy of the atom with respect to the
shows that they do indeed perform better but only by predicting diatom, and

nonphysical transitions into energetically closed states. When

Supporting Information Available: Tables S-1 to S-20
contain additional transition probabilities from the semiclassical
and quantum mechanical calculations (20 pages). This material
is available free of charge via the Internet at http://pubs.acs.org.

the final states in such cases are reassigned to the closest [3.ot)]?
energetically allowed state of that arrangement by the systematic Viner(Nt) = V(1) + —— (A-2)
method of ref 2, the overall average error actually exceeds the diat’

average probability. One does better by taking all nonadiabatic
probabilities as zero, which caps the unsigned error at 100%.
One would still prefer the methods that predict nonzero
probabilities if they yielded useful trends or branching ratios,
but the trends and branching ratios are not qualitatively correct
whether or not one reassigns energetically forbidden final states.

Reverse methods are computationally expensive, but they do ) — ;
not agree any better than the forward methods with the accurate Vi) = MV efl1) + NV 1) (A-3)
guantum calculations. Enforcing energy conservation using the
present algorithm never improves the results, and it often makes
them much worse.

Overall, the TFS-H—ENC and E-LSS—ENC methods work Lin(t) = $ /210l E = Trat) = Vineen)] - (A-4)
the best. The MM method does represent the correct trend, butT
it consistently overestimates the probabilities. None of the
methods predicts small probabilities even qualitatively correctly,
with the Ehrenfest method being the least inaccurate for —
nonreactive collisions. The TFS mgthod is the best for reactive Tt = E = Tre(t) = Vinixen(r (1)) (A-5)

where J(tr) is the final magnitude of the classical rotational
angular momentum. In SCP methods, though, the final electronic
populations aren; for m = 1 and (1 — n;) for m = 2.
Asymptoticallyn; becomes a constant, and the diatomic radial
motion is governed by a mixed effective potential

Then

his is evaluated as follows. The final diatomic radial kinetic
energy is given by

nonadiabatic collisions.

Then
. lusi —
6. Conclusions in(t) = $0r /2o Tiadty) + Vinixefi(t) = Vimixer (1]
The TFS method is the best overall method for this system (A-6)
if energy conservation is not enforced. Ehrenfest is the secondW def
e define

best; it is almost as good as TFS for the quenching probabilities,
but it always predicts a zero reaction probability. Forcing ener:
conservat?i)npmakes the results Worspe if it hat)s/ an effe?:t, ang);t W(r) = V2,eff(r) - Vl,eff(r)
has a more detrimental effect on the TFS method than the

Ehrenfest one, so the Ehrenfest method has the smallest averag-éhen

error if one insists on energy conservation. Reverse methods 12
are much more expensive than forward ones, but their accuracy Lin(t) = $dr { 2ugad1(ter) + 15001} (A-8)
is no better than the direct methods. In general the results are

not encouraging for our ability to make reliable quantitative Where

semiclassical calculations on photochemical reactions in which

the potential surfaces are weakly coupled, but the fewest- l(tar) = Taiadt) T Vet + Vi erdr) (A-9)

(A-7)
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and and¢3(x;R) and ¢5(x;R) are adiabatic states. These states can

be expanded in the diabatic basis:
() = (1 — n)[W(t) — W(r)] (A-10)

Under two frequently encountered circumstandgs;) is zero

or very small and can be neglected. First of all, this is true if Aoy d, . d, .
Vi(r) is parallel toVa(r). This is true at the (M or M*+ Ha $2(XiR) = Cu(R) $1(xR) + CfR) $(x;R) (B-12)
asymptotes in ref 2 (where M is a metal atom) or at the (Br or

Br) + H, asymptote in the present paper. The second Where

circumstance wherk(t;,r) can be neglected is when is very

Pi(XR) = c1y(R) #1(R) + ¢ 1R) ¢3(x;R) (B-11)

small or zero. This occurs at the MiH H asymptotes in ref 2 AU(R) + A/AU(R)Z + 4U122
or at the HBr+ H asymptote in the present paper. c(R)y=-— N.R) (B-13)
1
Appendix B oL
Consider a diabatic potential energy matrix with constant c,(R) = 12 (B-14)
coupling terms given by N,(R)
U, (R) U
VAR) = (ull U“(R)) (B-1) AU(R) — /AU(R)? + 4U 2
12 22 c,y(R)=— N(R) (B-15)
2
where
dey,. . dr,. 2U12
Ui (R) = [ (R)[Hg(X;R) ¢ (x;R)TJ (B-2) C,R) = R (B-16)
2

Uy, = [BI0GR) | H (6;R) | ¢5(X;R) = constant (B-3) and

andHg|(x;R) is the electronic Hamiltonian (which also includes

the nuclear Coulombic energyR is the vector of nuclear (R) = \/4U 24 (AU(R) + /AU(R)2+ U 2)2 (B-17)
coordinates,x is the vector of electronic coordinates, the ! 12 12

integrations in eqs B-2 and B-3 are owerand ¢>id(x;R) and 5 > oo
¢(x;R) are orthonormal diabatic states satisfying: Ny(R) = \/4U12 + (AU(R) — yAU(R)" + U.,)"  (B-18)

@?(X;R)|VR|¢JF’(X;R)D= 0 (B-4) The nonadiabatic coupling vector is defined as

BRI (GR)O= 6 (B-5) d1(R) = BI(XR)| Vrl$3(:R)D (B-19)

whereVr is the gradient oveR andoj is the Kronecker delta. ~ When eqgs B-11 and B-12 are substituted into eq B-19, and the
As discussed elsewhetégq B-4 is possible only for certain  integration is carried out with egs B-4 and B-5, the nonadiabatic
model systems. In particular, as proposed by Preston andcoupling can be written:

Tully,3%32it is possible for systems satisfying what we have

called® the invariant-space approximation. The present system d,,(R) = ¢;5(R)VRC(R) + ¢;1(R)VRC,(R) (B-20)

(like essentially all systems that have been treated by semiclas-

sical and classical trajectory methods) satisfies this approxima-which can be simplified to:

tion by construction.

The diabatic potential matrix in eq B-1 can be diagonalized 1 4U122
to give the adiabatic potential energy matrix: d,(R) = VrlU,o(R) —
N1(R) No(R)l JAU(R)? + 4U, 2
ALR) 0 )
R =" B-6 U,(R)] (B-21
viw = o &6) L(R)) B-21)

It can be seen thal;»(R) points in the direction of the difference
of the gradients of the diabatic potential matrix elemdis
— Al . a,,. (R) andU2,(R). Note that the sign od;(R) is arbitrary, in the
Au(R) = 10 R)Ha(GR) 10 R)T= usual way for off-diagonal matrix elements, since the adiabatic
U(R) — \/AU(R)Z—i— U122 (B-7) states defined in eqs B-10 and B-11 may be multiplied by a
phase factor without changing the adiabatic potential in eq B-6.

where

A(R) = [P5(6;R)[Hy(X;R)[93(x;R) = Now consider the vector defined by
UR) + yAUR)* + U, (B-8) 912(R) = VRlA(R) = A4(R)] (B-22)
and Substituting eqs B-7 and B-8 into eq B-22 gives a result that

UR) = (1/2)U,,(R) + Uy (R)) (B-9) can be simplified to

AU(R) = (1/2)U(R) — Uy(R))  (B-10) 0,(R) = 2Ve/AURYZ + U, (B-23)
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or to 0.010

2AU(R)

JAUR)® + U,,?

Equation B-24 shows that the vectgr(R) also points in the
direction of difference in the gradients of the diabatic potential
matrix elements. The sign anz(R), unlike the sign orix(R),

is well-defined.

The vectorsdix(R) and gi2(R) may be parallel for some o L i L L e
geometries and antiparallel for others. Consider the afigie, 107 10 103 102
betweend;»(R) and gix(R): BT

Figure 5. Dependence of the nonreactive de-excitation (i.e., quenching)
_ 01(R)-d;(R)

. probabilities calculated by generalized BlaiBruhlar method for Br*
COSOdg - R R) sign[AU(R)]  (B-25) + H3(0,0) — Br + H; on parametetgr, atE = 1.3 eV.
191(R)I191(R)|

91AR) = VrlUx(R) — Uy(R)] (B-24)

0005 F

Pquench

Note that the sign of the dot product will change at the line of and

crossings betweeld 1(R) andUz2(R). On one side of this line, ¢, = —¢,R-dy,R) (C-2)
the two vectors will be parallel; on the other side they will be

antiparallel. For potential matrices in which there are no wherec; andc, are complex coefficients. The time derivatives

crossings betweeb11(R) andUzx(R), the vectorshAR) and  of the probabilities of being in state 1 or 2 can be shown to be
012(R) will be parallel (or antiparallel) for all geometries.  equal to

However, we note that the TFS methods are invariant to the .
sign on the unit vector that identifies the direction in which the P, =2 Rel,*¢,JRd;(R) (C-3)
momentum is incremented or decremented.

and
Appendix C . e
The generalized BlaisTruhlar (GBT) method is a modifica- P = 2 Ref;"c]R-dy(R) (C-4)
tion of the original BT method that allows weakly coupled
systems to be studied. This overcomes a disadvantage of th
original BT method, which is that no hops will ever occur if
the probability of being in the current electronic state never drops
to 0.5.

The GBT method involves a parametesr, that is between
0.0 and 0.5. If the probability of being in the current electronic
state drops to T egr, then a quantum mechanical measurement 9 . .
is made. The trajectory hops with a probability &y, and 3_tRe[Cz ¢l = (P, — P)R-dy5(R) (C-5)
remains in the current state with a probability of-legt. The
trajectory is reinitialized in either case. Here reinitialization is Note that in the GBT method, agr is set to smaller and
taken to mean that the real part of the coefficient of one of the smaller values, measurement events occur more often. Regard-
electronic states is set to equal 1, and the imaginary part of thisless of whether a hop occurs or not, the trajectory is reinitialized.
coefficient and both parts of the remaining coefficients are set In a sense, we force the trajectories to exist in a regime where
to be 0. the probabilities are changing slowly, or not at all. In the limit

We choosegr to be an order of magnitude smaller than the of an infinitesimal value ofegr, the total number of hops
average change in the electronic probabilities, as computed fromapproaches zero. This can be more clearly seen by examining
a small batch of trajectories in the absence of hopping events.an ideal case wheie-d1(R) = 1 at all geometries and all times.
This would allow the observation of hopping events even for It can be shown that for this simple case one solution is given
systems in which the probability only changes by a very small by P; = sirt, P, = cog t, and Ref;*c;] = (1/2)sin 2. Att =
amount. The hypothesis to be tested is whether the calculatedd the system is in the excited electronic state. When
value of the total quenching probability is independent of the arccosfgr/4, the trajectory will either hop to surface 1 and be
parametekgr over some range of values. reinitialized, or remain on surface 2 and be reinitialized. The

The quenching probability for Bridas a function ofgr is number of hop decisions over an interval of tinig,is thus
shown in Figure 5. Note that there is no plateau region. At a T/arccosfgr/4, and the total number of hops that is expected
high value ofegt the quenching probabilityPq, is zero, as to occur over this interval is given byegr/arccosfsrt/d.
expected (notice thagr = 0.5 yields the original BT method  Clearly, ascgr approaches zero, the total number of hops also
exactly). Asegr decreases, the system experiences more hoppingapproaches zero, for ariy
decisions, andPq increases. Past a certain point, howeWrgy, This explanation reveals an important point in TSH calcula-
decreases instead of reaching a stability region. We can explaintions. The electronic coherence is important in the description
this second trend by examining the form of the equations for of nonadiabatic dynamics, especially for systems with small
the electronic coefficients whose square magnitude gives thevalues ofR-dix(R). In these systems, the dynamics observed
probability of being in either adiabatic state. These equations when electronic coefficients are reinitialized will be very
are-® different from the dynamics observed when coherence informa-

. tion is maintained. Further consideration of the type of argument
€= —CRd4(R) (C-1) in the previous paragraph eventually leads to the conclusion

Thus, the rate of change of the probabilities depends coherently
eLJpon past history. Following a reinitialization, the coherence is
zero, and the probabilities will be stationary. They will remain
so until the coherence grows to some significant value, and,
from eqgs C-1 and C-2 we see that this rate of change is given
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that the rate of hopping must depend on the rate of change of

the probabilities (as in the TFS algorithm) rather than the
magnitude of the probabilities (as in the BT or GBT algorithm)
and that the probabilities should not be reinitialized during the
trajectory. In systems with large values &-dix(R), the
derivatives given in eqs C-3 and C-4 may be large even shortly
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a smaller effect on the dynamics. This is the kind of system for

which the BT method was originally devised. This discussion

shows why weakly coupled systems provide a critical test case
for semiclassical methods.
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